

- 2. The weight-heat reservoir, at temperature T_2 , is in contact with another heat reservoir at T_1 (< T_2) and the heat is allowed to flow out to lower the weight-heat reservoir temperature to T_1 .
- **3.** The heat reservoir in the weight-heat reservoir system is at temperature T_1 . The weight is allowed to fall, performing work, and the heat produced enters the heat reservoir to raise its temperature to T_3 .

Process 3, summation of process 1 and 2, is more irreversible than either process 1 or process 2.

- Examination of these processes suggests that the amount of heat produced Q, and the temperature T at which the heat is produced are important to measure the degree of irreversibility of the process.
- To compare between process 1 and process 3, the quantity

$\mathbf{Q}_1/\mathbf{T}_2 < \mathbf{Q}_3/\mathbf{T}_1$

which agrees with the conclusion that process 1 is less irreversible than process 3.

The quantity Q/T is, thus, can be taken as a measure of the degree of irreversibility of the process.

