

Example 3.3

One mole of an ideal gas is kept at 10 atm pressure and 100 K temperature. The PVT relationship for an ideal gas can be expressed by the relationship PV=nRT, where the value of R, the ideal gas constant, can be taken as 0.082 litre-atm/mol-K.

Calculate the amount of mechanical work done on the system if it undergoes a reversible

- (i) isothermal expansion to 1 atm,
- (ii) isobaric expansion to 10 litres, and
- (iii) isochoric process.

Example 3.4

An ideal gas is held in a piston-cylinder assembly undergoes a reversible adiabatic expansion for which the relationship between pressure and volume is given by PV^{γ} = constant. The initial pressure is 3 bar and the initial and final volumes are 0.1 m³ and 0.2 m³ respectively.

Determine :

- (1) the amount of mechanical work done to the system, and
- (2) the change in internal energy of the system for the process if (a) $\gamma = 1.5$, (b) $\gamma = 1.0$, and (c) $\gamma = 0$.

$\gamma = 1.5$

 $\begin{aligned} & \underline{\text{Given Data:}} \\ P_1 = 3.0 \text{ bar}, \quad V_1 = 0.1 \text{ m}^3, \quad V_2 = 0.2 \text{ m}^3, \quad \gamma = 1.5 \\ PV^{\gamma} &= \text{Constant, k} \\ P_2 &= P_1 (V_1/V_2)^{\gamma} = (3.0 \text{ bar}) (0.1 \text{ m}^3 / 0.2 \text{ m}^3)^{1.5} = 1.06 \text{ bar} \\ & W = \left(\frac{(3.0 \text{ bar}) (0.1 \text{ m}^3) - (1.06 \text{ bar}) (0.2 \text{ m}^3)}{1.5 - 1} \right) \left(\frac{10^5 \text{ N/m}^2}{1 \text{ bar}} \right) \left(\frac{1 \text{ kJ}}{10^3 \text{ N.m}} \right) \\ & W = -17.6 \text{ kJ} \end{aligned}$ The process is adiabatic, thus Q = 0 $& \Delta U = \text{Q} + W = W = -17.6 \text{ kJ}$

$\underline{\gamma} = 1.0$

PV = constant, P = constant / V

$$\Delta U = W = -\int P \, dV = (P_1V_1) \ln (V_1/V_2) = -20.79 \, kJ$$

<u>γ</u> = **0**

$$\Delta U = W = -P(V_2 - V_1) = -30.0 \text{ kJ}$$

Table 3.1

Reversible mechanical work done on the system containing n mole of an ideal gas during various kinds of processes

Process	Work Done On System
Isothermal	W = - n RT ln (V ₂ /V ₁) = (P ₁ V ₁) ln (V ₁ /V ₂)
Adiabatic	$W = (P_1 V_1 - P_2 V_2) / (1 - \gamma)$
Isobaric	$W = -P(V_2 - V_1) = nR(T_1 - T_2)$
Isochoric	W = 0

