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MME 231:  Lecture 10 

Thermodynamic 
Variables and 
Relations 

 Thermodynamic relations derived from the 

Laws of Thermodynamics 

 Definitions in thermodynamics 

  The energy functions 

  Experimental variables 

 Coefficient relations and Maxwell relations 

 Examples 

Today’s Topics 
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 To solve practical problems requires 

 finding or deriving the relationships between the sought (dependent) 

variables and the given (independent) variables of the type: 

 Z  =  Z (X, Y, ....) 

How to Tackle a 

Thermodynamic Problem ? 

 Identify which system properties are given (X, Y, ….) 

 Identify which system property you want to find (Z) 

 Establish the relationship that connect the sought and given properties 

    Z  =  Z (X, Y, …) 

 Find required materials properties 

 Perform calculation 

 Steps in solving practical problems: 

Relations Derived from the  
Laws of  Thermodynamics 

The first law: 

dU  =  Q + W + W 

 Reversible heat absorbed by the system: 

Qrev  =  TdS 

 Reversible mechanical work done on the system: 

Wrev   =   - P dV 

 Combined statement of the first and second laws: 

dU  =  TdS – PdV + W 
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Definitions in Thermodynamics 

Energy Functions 

 Enthalpy, H 

 Helmholtz Free Energy, F 

 Gibbs Free Energy, G 

  

 Experimental Variables  

 Coefficient of Thermal Expansion, a 

 Coefficient of Compressibility, b 

 Heat Capacity, CP 

Enthalpy   or   The Heat Content 

dH  =  dU + PdV + VdP 

dH  =  [ TdS - PdV + W ] + PdV + VdP 

dH  =  TdS + VdP + W 

H    U + PV Definition: 

For isobaric processes in simple systems (W=0), 

dHP   =  TdSP   =  Qrev , P 

That is why, enthalpy is often noted as  

the heat content of the system 
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dF   =   dU – TdS – SdT 

dF   =   [ TdS – PdV + W ] – TdS – SdT 

dF   =   – SdT – PdV + W 

F  U - TS Definition: 

For isothermal processes, 

dFT   =  – PdVT + WT   =   WT  +  WT 

dFT   =  Wtot ,T 

So. F is often called the Work Function 

Helmholtz Free Energy  or   The Work Function 

dG   =   dU – TdS – SdT 

dG   =   [TdS + VdP + W] – TdS – SdT 

dG   =   – SdT + VdP + W 

G  H - TS Definition: 

For isothermal and isobaric processes, 

dGT, P   =   W’T, P 

Gibbs Free Energy, G 
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The Four Combined Statements 

dU  =    TdS – PdV + W 

dH  =   TdS + VdP + W 

dF  =   – SdT – PdV + W 

dG  =   – SdT + VdP + W 

Coefficient of  

Thermal Expansion, a 

Change in volume of material 

with temperature at constant P 

Coefficient of 

Compressibility, b 

Change in volume of material 

with pressure at constant T 

 These coefficients depend not only on material composition, 

but also on temperature and pressure of the system. 

K-1 
1 

V 

V 

T 
a  =   

P 

atm-1 
1 

V 

V 

P 
b  =   

T 

The Experimental Variables 
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Heat Capacity 

  Heat required (Q) to bring about a certain temperature 

change (DT) 

 The concept of heat capacity is only used when the 

system produces a finite temperature change (i.e. DT0) 

and C =   
Qrev 

DT 
C =   

Qrev 

dT 

A material melts at constant temperature.  

Thus, for this isothermal process, heat capacity cannot be 

considered. 

or,    Qrev,P   =  CP dTP  

or,    Qrev,V   =  CV dTV 

 Generally, for a given material,  CP > CV.  Why? 

 Like heat, heat capacity is a process variable. 

 Heat capacity is an extensive variable. 

 Specific heat capacity (heat capacity per gram of substance at 

constant P) and molar heat capacity (heat capacity per mole 

of substance at constant P or V) are also used.  Thus, for 

example,  CP  =  n cP . 

CP =   
Qrev 

T 
P 

CV =   
Qrev 

T 
V 
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 The value of heat capacity changes with temperature, 

pressure and composition of the system. 

 Temperature dependence of constant-pressure      

heat capacity, CP, is usually expressed by the relation 

CP (T)   =   a  +  bT  +  cT–2 

 where a, b, c  are constants  

 Almost all heat capacity measurements are generally 

made at 1 atm pressure i.e., at constant pressure. 

 If a, b, and CP are known for any simple system 

 (for which W’=0) 

  

  Changes of all the state functions can be computed  
for any arbitrary process through which the system may be taken 

  

  No additional information is required. 
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The Coefficient Relations 

The function: 

Z = Z (X, Y) 

dZ  =  MdX + NdY 

Coefficient Relations: 

M (X,Y)  =  (Z/X)Y 

N (X,Y)  =  (Z/Y)X 

Combined Statements 

dU  =  TdS – PdV 

dH  =  TdS + VdP 

dF  =  -SdT – PdV 

dG  =  -SdT + VdP 

T  =  (H/S)P  ;     V  =  (H/P)S 

-S  =  (F/T)V  ;    -P  =  (F/V)T 

-S  =  (G/T)P  ;    V  =  (G/P)T 

T  =  (U/S)V  ;    -P  =  (U/V)S 

Coefficient Relations 

The Maxwell Relations 

Z = Z (X, Y) 

dZ = MdX + NdY 

M  =  (Z/X)Y 

N  =  (Z/Y)X 

Combined Statements 

dU  =  TdS – PdV 

dH  =  TdS + VdP 

dF  =  -SdT – PdV 

dG  =  -SdT + VdP 

(T/V)S  =  - (P/S)V 

Maxwell Relation: 

(M/Y)X  =  (N/X)Y 

Maxwell Relations 

(T/P)S  =  (V/S)P 

(S/V)T  =  (P/T)V 

- (S/P)T  =  (V/T)P 



9 

It is important to specify explicitly  

not only the variables in the numerator and denominator 

of each partial derivative 

but also the variable that is being held constant, 

indicated in the subscript outside the parentheses of the 

partial derivative.  

¶H
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V

are not equal to each other 

The Transformation Formula 

Z  =  Z (X, Y) 

dZ  =  (Z/X)Y dX + (Z/Y)X dY 

For an incremental change in state at constant Z: 

dZ  =  0  =  (Z/X)Y dXZ + (Z/Y)X dYZ 

(Z/X)Y dXZ  =  - (Z/Y)X dYZ 

(Z/X)Y . (X/Y)Z  =  - (Z/Y)X 

(Z/X)Y . (X/Y)Z . (Y/Z)X  =  - 1 

(X/Y)Z . (Y/Z)X . (Z/X)Y  =  - 1 
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Example 4.2 

Show that heat is not a state variable. 

Using the first law, for W=0, 

dU  =  Q – PdV 

Q  =  dU + PdV 

If Q = Q (P, V) were to be a state function, Maxwell relation must be valid.  

(/V) [(U/P)V]P  =  (/P) [(U/V)P  + P]V 

2U 

V.P 
V, P 

2U 

P.V 
P, V 

P 

P 
V 

=                  + 
But this requires that 
(P/ P)V = 0 
which is never true.  

Thus, heat is not a state variable. 

For the function U = U(P,V): 

dU = (U/P)V dP + (U/V)P dV 

Q  = (U/P)V dP + (U/V)P dV + PdV 

Q  = (U/P)V dP  +  [(U/V)P  + P] dV  

Next Class 

Lecture 11 

Thermodynamic Variables 
and Relations 
General Procedure to Obtain Thermodynamic Relations 

Rashid/ Ch#4 


