MME 231: Lecture 11

Thermodynamic Variables and Relations

General Procedure to Obtain Thermodynamic Relations

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

TABLE 4.2

Thermodynamic state functions expressed in terms of the independent variables T and P $\ensuremath{\mathsf{P}}$

 $\begin{array}{lll} V = V (T, P): & dV = V\alpha dT - V\beta dP \\ S = S (T, P): & dS = (C_P/T) dT - V\alpha dP \\ U = U (T, P): & dU = TdS - PdV & dU = (C_P - PV\alpha)dT + V(P\beta - T\alpha)dP \\ H = H (T, P): & dH = TdS + VdP & dH = C_P dT + V(1 - T\alpha)dP \\ F = F (T, P): & dF = -SdT - PdV & dF = -(S + PV\alpha)dT + PV\beta dP \\ G = G (T, P): & dG = -SdT + VdP & dG = -SdT + VdP \end{array}$

The coefficients in these differential equations contain the following factors: **T** and **P** (the independent variables specified in any application) **a**, β and **C**_P (the experimental variables to be available in tables or data bases) **S** and **V** (can be evaluated as functions of T and P, given the value of α , β and C_P)

Example 4.3

Relate the entropy of a system to its temperature and volume.

- **1.** S = S(T, V)
- **2.** dS = M dT + N dV
- **3.** Using Table 4.2: $dS = M dT + N (V \alpha \Box dT V \beta \Box dP)$
- 4. $dS = MdT + NV\alpha dT NV\beta \Box dP = (M + NV\alpha) dT NV\beta \Box dP$
- **5.** From Table 4.2: $dS = [C_P/T]dT V\alpha dP$
- 6. Comparing coefficients: $M + NV\alpha = C_P/T$; $-NV\beta = -V\alpha$
- 7. Solve this pair of equations for M and N:

$$M = \frac{1}{T} \left[C_{P} - \frac{TV\alpha^{2}}{\beta} \right] \text{ and } N = \frac{\alpha}{\beta}$$

$$S = S(T, V) : dS = \frac{1}{T} \left[C_{P} - \frac{TV\alpha^{2}}{\beta} \right] dT + \frac{\alpha}{\beta} dV$$

Example

Find the relationship needed to compute the change in Gibbs free energy when the initial and final states are specified by their pressure and volume.

$$G = G (P, V)$$
 $dG = \left(V - \frac{S\beta}{\alpha}\right) dP - \frac{S}{V\alpha} dV$

Example 4.4

Derive an expression for the increase in temperature for process in which the volume of the system is changed at constant entropy.

$$T = T (V, S) \qquad dT_{S} = -\frac{T\alpha}{C_{V}\beta} dV_{S}$$

Next Class

Lecture 12

Thermodynamic Variables and Relations

Applications of thermodynamic relations **Rashid/ Ch#4**