MME 231: Lecture 12

Thermodynamic Variables and Relations

Application of Thermodynamic Relations

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

$$
PV = RT
$$
\n
$$
\alpha = \left(\frac{1}{V}\right) \left(\frac{\partial V}{\partial T}\right)_P = \left(\frac{P}{RT}\right) \left(\frac{R}{P}\right) = \frac{1}{T}
$$
\n
$$
\beta = -\left(\frac{1}{V}\right) \left(\frac{\partial V}{\partial P}\right)_T = -\left(\frac{P}{RT}\right) \left(\frac{-RT}{P^2}\right) = \frac{1}{P}
$$
\n
$$
C_P - \frac{TV\alpha^2}{\beta} = C_P - \frac{TVP}{T^2} = C_P - R
$$
\n
$$
C_P - R = C_V
$$
\nFor monatomic gases: For diatomic gases:\n
$$
C_V = 3R/2 \qquad C_P = 5R/2 \qquad C_V = 5R/2 \qquad C_P = 7R/2
$$

 $dU = (C_P - PV\alpha) dT + V (P\beta - T\alpha) dP$ $dU = (C_P - PV/T) dT + V (P/P - T/T) dP = (C_P - R) dT$ $dU = C_v dT$ $\Delta U = C_V (T_2 - T_1)$ $dH = C_P dT + V(1 - T_α) dP$ $dH = C_P dT + V(1 - T/T) dP$ $dH = C_P dT$ $\Delta H = C_{\rm p} (T_2 - T_1)$

Example 4.5 One mole of an ideal monatomic gas initially at temperature 298 K and occupying volume 10 litres is compressed reversibly and adiabatically to a final volume of 2 litres. Compute the final temperature of the system. For the function $S = S(T, V)$: $dS = (C_V/T) dT + (\alpha/\beta) dV$ Then, for the function $T = T(S, V): dT = (T/C_V) dS - (T\alpha/\beta C_V) dV$ Using PV = RT, P = RT/V, and **(dT/T) = - (R/C^V) (dV/V)** Here, the function is: $T = T(S, V)$ **dT^S = - (T**a**/**b**C^V) dV^S** For adiabatic process, dS = 0. Thus, **Now, for ideal gas,** α **= 1/T,** β **=1/P. So, dT = - (P/C_V) dV**

One mole of nickel initially at 300 K and 1 atm pressure is taken through two separate processes:

- (1) an isobaric change in temperature to 1000 K, and
- (2) an isothermal compression to 1000 atm.

Compare the change in enthalpy of nickel for these two processes**.**

Given data:

V (300 K, 1 atm) = 6.57 cc/mol α = 40x10⁻⁶ K⁻¹ β = 1.5x10⁻⁶ atm⁻¹ $C_{\rm P}$ = 16.99 + 2.95x10⁻²T J/mol-K.

 $\Delta H = \int dH = \int (16.99 + 2.95 \times 10^{-2} \text{ T}) dT$ 1000 300 1000 300 $\Delta H = 11893.0 + 13422.5$ J/mol D**H = 25315.5 J/mol** The second term on the right hand side of the equation arises from the temperature dependent contribution to the heat capacity. If T dependency is ignored, $C_P = 16.99$, and then $\Delta H = 11893.0$ J/mol **Process 1 (Isobaric)** $dH_P = C_P dT$ **Answer:** $H = H (T, P)$ dH = $C_P dT + V (1 - T\alpha) dP$

5

Then the enthalpy change **dH** = V_0 [1 + β (P – P₀)] (1 - Tα) dP **For an exact calculation**, \bullet the values of a are within the range of 10⁻⁶, so that α can be considered as constant. **•** but, pressure dependency of V cannot be ignored. $dV = V\alpha dT - V\beta dP$, and at constant T $dV_T = -V\beta dP_T$ and integrating between the limits, ln (V/V₀) = - β (P – P₀) $VVV_0 = exp$ $V \cong V_0 | 1 + \beta (P - P_0)$ - β (P – P₀)

dH =
$$
V_0(1 + \beta (P - P_0))(1 - T\alpha) dP
$$

\nIntegrating,
\n
$$
\Delta H = V_0 (1 - T\alpha) \left(P + \frac{\beta (P - P_0)^2}{2} \right)_1^{1000}
$$
\n
$$
\Delta H = 657.0 + 0.07 \text{ J/mol}
$$
\nOnly 0.07 J/mol amount of enthalpy is added because of addition of the pressure variation of volume into the equation.
\n**For solids and liquids, energy changes associated with thermal influences tend to be much larger that those arises from mechanical influences.**

Next Class

Lecture 13 Equilibrium in Thermodynamic Systems