

Use of Nomogram

Example 6.2

The solubility of naphthalene $(C_{10}H_8)$ in benzene (C_6H_6) at 20 C is 34.3 wt.%. Find its mole fraction.

Answer:

- 1. Connect the point corresponds to the molecular weight of naphthalene, M_2 =128 (the first scale on the left) to the point corresponds to the molecular weight of benzene, M_1 =78 (the third scale from the left).
- 2. The line gives the ratio M_2/M_1 on the second scale.
- 3. Now connecting this point to the point 34.3 wt.% on the fifth scale (i.e., the rightmost scale) will give the desired mole fraction 24 mole % (or, $X_2=0.24$) on the fourth scale.

\n- □ For a multi-component system, V is a function not only of T and P (as in one-component system) but also of the number of moles of each component in the system
$$
(n_1, n_2, \ldots, n_c)
$$
.
\n- ✓ $V' = V' (T, P, n_1, n_2, \ldots, n_c)$
\n- □ For an arbitrary infinitesimal change in state
\n- $dV' = \left(\frac{\partial V'}{\partial T}\right)_{P, n_k} dT + \left(\frac{\partial V'}{\partial P}\right)_{T, n_k} dP + \left(\frac{\partial V'}{\partial n_1}\right)_{P, T, n_2, n_3, \ldots, n_c} d n_1 + \left(\frac{\partial V'}{\partial n_2}\right)_{P, T, n_1, n_3, \ldots, n_c} d n_2 + \ldots + \left(\frac{\partial V'}{\partial n_c}\right)_{P, T, n_1, n_2, \ldots, n_{c-1}} d n_c$
\n

$$
dV' = \left(\frac{\partial V'}{\partial T}\right)_{P, n_k} dT + \left(\frac{\partial V'}{\partial P}\right)_{T, n_k} dP + \sum_{K=1}^{C} \left(\frac{\partial V'}{\partial n_k}\right)_{P, T, n_j \neq n_k} dn_k
$$

\nFor any extensive variable Z',
\n
$$
dZ' = M dT + N dP + \sum_{K=1}^{C} \overline{Z}_k dn_k
$$
\nwhere the partial molar property of Z of component k
\n
$$
\overline{Z}_k \equiv \left(\frac{\partial Z'}{\partial n_k}\right)_{P, T, n_j \neq n_k} (k = 1, 2, 3, C)
$$

\nSelf-Assessment Question 6.2
\nWrite an expression for the partial molar Gibbs free energy of component A
\nin the A-B binary solution.

General Properties of Partial Molar Properties
\n(1)
$$
Z' = n_1\overline{Z}_1 + n_2\overline{Z}_2 + \dots + n_c\overline{Z}_C = \sum_{K=1}^{C} n_k\overline{Z}_K
$$

\n(2) Dividing both sides with the total number of moles, n_T
\n $Z = X_1\overline{Z}_1 + X_2\overline{Z}_2 + \dots + X_C\overline{Z}_C = \sum_{K=1}^{C} X_K\overline{Z}_K$
\n(3) Differentiating completely
\n(4) $\sum_{K=1}^{C} (X_K d\overline{Z}_K + \overline{Z}_K dX_K)$
\n(5) $\sum_{K=1}^{C} (X_K d\overline{Z}_K + \overline{Z}_K dX_K)$

$$
dz' = MdT + NdP + \sum_{k=1}^{C} \overline{Z}_{k} dn_{k}
$$

\n
$$
\Box
$$
 At constant T and P
\n
$$
dz' = \sum_{k=1}^{C} \overline{Z}_{k} dn_{k} \quad \text{and} \quad dz = \sum_{k=1}^{C} \overline{Z}_{k} dX_{k}
$$

\n
$$
\Box
$$
 Since
$$
dZ = \sum_{k=1}^{C} (X_{k} d\overline{Z}_{k} + \overline{Z}_{k} dX_{k})
$$

\n
$$
\bigoplus_{k=1}^{C} \sum_{k=1}^{C} X_{k} d\overline{Z}_{k} = 0 \quad (\text{At constant T and P}) \quad \text{Gibbs-Duhem Equation}
$$

6

Partial molar properties from the total molar properties	
$Z = \sum_{k=1}^{C} \overline{Z}_k X_k = \overline{Z}_1 X_1 + \overline{Z}_2 X_2$	$dZ = \overline{Z}_1 dX_1 + \overline{Z}_2 dX_2$
$Z = \overline{Z}_1 X_1 + X_2 \left(\overline{Z}_1 + \frac{dZ}{dX_2} \right)$	$dZ = (\overline{Z}_2 - \overline{Z}_1) dX_2$
$Z = \overline{Z}_1 \left(X_1 + X_2 \right) + X_2 \left(\frac{dZ}{dX_2} \right)$	$dZ = (\overline{Z}_2 - \overline{Z}_1) dX_2$
$Z = \overline{Z}_1 + X_2 \left(\frac{dZ}{dX_2} \right)$	$\overline{Z}_2 = \overline{Z}_1 + \frac{dZ}{dX_2}$
$\overline{Z}_1 = Z - X_2 \left(\frac{dZ}{dX_2} \right) = Z + (1 - X_1) \left(\frac{dZ}{dX_1} \right)$	
$\overline{Z}_2 = Z - X_1 \left(\frac{dZ}{dX_1} \right) = Z + (1 - X_2) \left(\frac{dZ}{dX_2} \right)$	
\overline{Z}_1 and \overline{Z}_2 can be found from knowledge of Z either analytically or graphically	

Analytical Solution Example 6.3 Derive expressions for the partial molar volumes of each components as functions of composition if the volume change in a binary solution obeys the relation $V = 2.7 X_1 X_2^2$ cc/mol. $dV/dX_1 = 2.7 (X_2^2 + X_1^2.2X_2^2. dX_2/dX_1) = 2.7 (X_2^2 - 2X_1X_2)$ $dV/dX_2 = -dV/dX_1 = -2.7 (X_2^2 - 2X_1X_2)$ $V_1 = V - X_2 (dV/dX_2) = 2.7 X_1 X_2^2 - X_2 (-2.7 (X_2^2 - 2X_1X_2))$ V_1 = 2.7 ($X_2^3 - X_1 X_2^2$) V_2 = V $-X_1$ (dV/dX₁) = 2.7 $X_1 X_2^2 - X_1$ 2.7 (X₂² – 2X₁X₂) V_2 = 5.4 $X_1^2X_2$

$$
\overline{Z}_1 \Big|_{X_1 = X_1} - \overline{Z}_1 \Big|_{X_1 = 1} = - \int_{X_1 = X_1}^{X_1 = X_1} \left(\frac{X_2}{X_1} \right) d\overline{Z}_2
$$

For pure component, partial molar property does not exist.
So at $X_1 = 1$, $\overline{Z}_1 = 0$

$$
\overline{Z}_1 = - \int_{X_1 = 1}^{X_1 = X_1} \left(\frac{X_2}{X_1} \right) d\overline{Z}_2
$$

Thus, knowing the value of \overline{Z}_2 , the partial molar properties of one component, and a reference state, the partial molar property of the other component can easily be calculated.

$$
d\overline{Z}_1 = -\int_{X_1=1}^{X_1=X_1} \left(\frac{X_2}{X_1}\right) d\overline{Z}_2
$$

 \Box If a relationship between \overline{Z}_2 and X_2 is given, the above relation can be modified as

$$
d\overline{Z}_2 = \frac{dZ_2}{dX_2} dX_2
$$

$$
\overline{Z}_1 = -\int_{X_1=1}^{X_1=X_1} \left(\frac{X_2}{X_1}\right) \frac{d\overline{Z}_2}{dX_2} dX_2
$$

 \Box If, on the other hand, the input relationship is between Z_2 and X_{1} , then

$$
\overline{Z}_1 = - \int_{X_1=1}^{X_1=X_1} \left(\frac{X_2}{X_1}\right) \frac{d\overline{Z}_2}{dX_1} dX_1
$$

Example 6.4

The partial molar enthalpy of component 2 in a binary solution is given by the equation $\Delta \overline{H}_2$ = aX₁². Compute the partial molar enthalpy for component 1 and the molar enthalpy for the solution.

$$
\Delta \overline{H}_1 = -\int_{X_1=1}^{X_1=X_1} \left(\frac{X_2}{X_1}\right) \frac{d(\Delta \overline{H}_2)}{dX_1} dX_1 \qquad \frac{d(\Delta \overline{H}_2)}{dX_1} = 2aX_1
$$

$$
\Delta \overline{H}_1 = -\int_{X_1=1}^{X_1=X_1} \left(\frac{X_2}{X_1}\right) . 2aX_1 . dX_1 = -2a \int_{X_1=1}^{X_1=X_1} X_2 dX_1
$$

$$
\Delta \overline{H}_1 = +2a \int_{X_2=0}^{X_2=X_2} X_2 dX_2 = aX_2^2
$$

$$
\Delta H = X_1 \Delta \overline{H}_1 + X_2 \Delta \overline{H}_2 = X_1 . aX_2^2 + X_2 . aX_1^2
$$

$$
\Delta H = aX_1 X_2 (X_1 + X_2) = aX_1 X_2
$$

