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Lecture 18 

Thermodynamics of 
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Measurement of Activity 

A. K. M. B. Rashid 
Professor, Department of MME 
BUET, Dhaka 

Today’s Topics 

 Measurement of activity 

 Measurement of activity coefficient 
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Measurement of  Activity 

Xk dZk   =   0 ∑ 
C 

K=1 

Gibbs-Duhem Equation 

 For A-B binary solution 

XA dZA  +  XB dZB   =   0 

 Using partial molar Gibbs free energy change for components in solution,  

XA d(DGA)  +  XB d(DGB)   =   0 (6.33) 

 For a system of fixed composition,      dG  =  – SdT + VdP 

 At constant temperature,      dGT = VdPT 

 And for 1 mole of an ideal gas at constant temperature, using V = RT/P, 

   dG  =  (RT/P) dP  =  RT (dP/P)  =  RT d lnP 

 Hence the partial molar free energy of component k in solution will be 

  dGk  =  RT d ln pk 

  For real solutions, replacing partial pressure with activity, we have  

dGk  =  RT d ln (p0
k . ak )  =  RT d ln ak 

p0
k is constant 

dG  =  RT d ln a (6.38) 
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  Integrating at constant temperature from the standard state to any 
other state 

  
G  –  G0   =   DG   =   RT ln a  – RT ln a0 

  
  By definition, the activity of a substance in its standard state is unity 
  

G  –  G0  =  DG  =  RT ln a 

dG  =  RT d ln a 

d (DGk)   =   RT d ln ak (6.40) 

  
  In terms of partial properties, similar integration of will give 
 

Gk  –  G0
k  =  DGk  =  RT ln ak 

XA d(DGA)  +  XB d(DGB)   =   0 d (DGk)   =   RT d ln ak 

XA (RT d ln aA)   +  XB (RT d ln aB)  =  0 

XA d ln aA  +  XB d ln aB  =  0 

d ln aA   =   –            d ln aB 
XB 

XA 

 
XA = 1 

XA = XA 

d ln aA   =   –                    d ln aB 
XB 

XA 
 

XA = 1 

XA = XA 

ln aA   =   –                    d ln aB 
XB 

XA 
 

XA = 1 

XA = XA 

(6.42) 

(6.41) 

The integration is done by 
graphical method using 
the plot (XB/XA)  vs. ln aB 
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XB=XB 

- ln aB 

Shaded area  =  ln aA 

1. For XB1,     XB/XA    and   –ln aB=0. 
 Curve exhibits a tail to plus infinity. 
  
2.  For XB0,    XB/XA0     and   – ln aB –   
 Curve exhibits a tail to minus infinity. 

XB 

XA 

Point 2 is important since the area 
under investigation includes a tails 
that extends to minus infinity.  

This includes an uncertainty into 
the calculation. 

ln aA   =   –                    d ln aB 
XB 

XA 
 

XA = 1 

XA = XA 

Use of activity coefficient to measure activity 

dXA  +  dXB   =   0 

dXA 

XA 

dXB 

XB 
XA               +   XB                =   0 

XA d ln XA  +   XB d ln XB  =   0 

XA d ln aA  +  XB d ln aB  =  0 

  Subtracting  eq.(6.43) from eq.(6.41) gives 

XA d ln gA  +  XB d ln gB  =  0 

  For a binary A-B solution, XA  +  XB   =   1   

(6.41) 

(6.43) 
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d ln gA   =   –             d ln gB 
XB 

XA 

 
XA = 1 

XA = XA 

d ln gA   =   –                    d ln gB 
XB 

XA 
 

XA = 1 

XA = XA 

ln gA   =   –                    d ln gB 
XB 

XA 
 

XA = 1 

XA = XA 

XA d ln gA  +  XB d ln gB  =  0 

(6.45) 

XB=XB 

 ln gB 

Shaded area  =  ln gA 

XB 

XA 

1.  For XB1,    XB/XA    and    ln gB=0. 
 Curve exhibits a tail to infinity. 
  
2.  Since the value of gB is always finite,   
  ln gB will always has a finite value when XB/XA0. 

The sign of ln gB depends 
on positive or negative 
deviation of solution 

ln gA   =   –                    d ln gB 
XB 

XA 
 

XA = 1 

XA = XA 
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Example 6.5 

The following data have been obtained for Cr-Ti solutions at 1250 °C. 

XCr 0.09  0.19   0.27 0.37  0.47  0.67  0.78 0.89 
aCr 0.302  0.532   0.660 0.788  0.820  0.863  0.863 0.906 

Calculate the activity of titanium in a Cr-Ti solution containing 60 atom% Ti. 

Integrating Gibbs-Duhem equation between the limits (1.0, 0.6) of titanium, 

ln gTi   =   –                    d ln gCr 
XCr 

XTi 
 

XTi = 1 

XTi = 0.6 

Answer 

The integration will be done using graphical methods by using the plot 
(XCr/XTi)  vs. ln gCr. 

=   +                    d ln gCr 
XCr 

XTi 
 

XTi = 0.6 

XTi = 1 

XCr XTi XCr/XTi aCr gCr ln gCr 

0.09 0.91 0.0989 0.302 3.355 1.210452 

0.19 0.81 0.2346 0.532 2.8 1.029619 

0.27 0.73 0.3699 0.66 2.444 0.893636 

0.37 0.63 0.5873 0.778 2.103 0.743365 

0.47 0.53 0.8868 0.82 1.745 0.556755 

0.67 0.33 2.0303 0.863 1.288 0.253091 

0.78 0.22 3.5454 0.863 1.106 0.10075 

0.89 0.11 8.0909 0.906 1.018 0.01784 

Data Sheet 
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The tail of the curve is extrapolated to zero value of (XCr/XTi). 

The area bounded by the 
curve and the axis for (ln gCr) 
between the values of ln gCr 
corresponding to XTi=0.6 and 
XTi=1.0 is calculated by the 
trapezoidal rule.  

From the plot, 
a = 0.64 
b = 1.36 
 
Let ,  n = 6 
Cord width,  
h = (b-a)/n  =  0.12 

a = 0.64 x1 = 0.76 x2 = 0.88 x3 = 1.00 
f(a) = 0.67 f(x1) = 0.58 f(x2) = 0.38 f(x3) = 0.28 

x4 = 1.12 x5 = 1.24 b = 1.36 
f(x4) = 0.18 f(x5) = 0.08 f(b) = 0 

XCr 

XTi 

ln gCr 

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

f(a) 

f(b) 

f(x5) f(x4) f(x3) f(x2) f(x1) 

XTi = 0.67 

XTi = 1.0 

The area under the curve 

S   =   h                             +  f(x1)  +  f(x)  +  ……  +  f(xn-1) 
f(a)  +  f(b) 

2 

=   (0.12)  ( 0.67/2  +  0.58  +  0.38  +  0.28  +  0.18  + 0.08 ) 

=  0.22 

Then at XTi = 0.6, 

ln  gTi   =   0.22        or,     gTi  =  1.25 

Hence, the activity of Ti at XTi = 0.6,  

aTi   =   gTi  .  XTi    =   1.25 x 0.6   =  0.75 
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Difficulties in measuring activity for solutions 
having a small amount of solutes 

  Darken and Gurry introduce  a function to determine activity when 
a solution contains  small amount of solute XA : 

ak   = 
ln gk 

(1 – Xk)
2 

 The a function is always finite and well behaved by virtue of the fact 
that, as  Xk1,  gk1. 

 For a binary A-B solution, 

aA   = 
ln gA 

XB
2 

aB   = 
ln gB 

XA
2 

and 

aB   = 
ln gB 

XA
2 

ln gB   =   aB XA
2 

d ln gB   =  d ( aB XA
2 )   =  2 aB XA

  dXA   +   XA
2  daB

 

ln gA   =   –                     d ln gB 
XB 

XA 
 

XA = 1 

XA = XA 

ln gA   =   –        (2aB XB dXA)   –        (XA XB daB)  
1 

XA  

 
1 

XA  
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 d (xy)    =       x dy   +       ydx   

d (XA XB aB)   =      XA XB daB   +     aB d (XA XB)     

ln gA   =   –        (2aB XB dXA)   –        (XA XB daB)  
1 

XA  

 
1 

XA  

XA XB daB   =      d (XA XB aB)    –      aB d (XA XB)     

XA XB daB   =      d (XA XB aB)    –      aB XA dXB   –      aB XB dXA      

ln gA   =   –        (2aB XB dXA)   –        (XA XB daB)  
1 

XA  

 
1 

XA  

XA XB daB   =      d (XA XB aB)    –      aB XA dXB   –      aB XB dXA      

ln gA   =   –        2aB XB dXA   –         
1 

XA  

 
1 

XA  

d (XA XB aB) 

+      aB XA dXB   +      aB XB dXA   
1 

XA  

 
1 

XA  

ln gA   =   –        2aB XB dXA   –         
1 

XA  

 
1 

XA  

d (XA XB aB) 

–      aB XA dXA   +      aB XB dXA   
1 

XA  

 
1 

XA  
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ln gA   =   –        2aB XB dXA   –         
1 

XA  

 
1 

XA  

d (XA XB aB) 

–      aB XA dXA   +      aB XB dXA   
1 

XA  

 
1 

XA  

ln gA   =   –       d (XA XB aB )    –       aB (XA + XB) dXA         
1 

XA  

 
1 

XA  

ln gA    =    –  XA XB aB     –       aB dXA         
1 

XA  

When aB is plotted against XA, the area under the curve from XA=XA to XA=1 
equals the right hand side of the above equation. 

Then, ln gA at XA=XA is obtained as (-aBXAXB) minus the area under the curve.  

As aB is everywhere finite, this 
integration does not involve a 
tail to infinity. 

The variation of aCu with composition in iron-copper solution 
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Lecture 19 

Thermodynamics of 
Solutions 
Dilute Solutions and Multicomponent Systems 

Next Class 


