Lecture 23

Application of Thermodynamics in Phase Diagrams

The Clausius – Clapeyron Equation

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

To obtain $\Delta H = \Delta H$ (P, T) for $\alpha \leq \beta$ equilibrium: d (Δ H) = dH β - dH α Now, for the function $H = H(P, T)$: $dH = C_pdT + V(1 - T\alpha) dP$ For all practical purposes, dependency of H on P can be ignored. Thus, $dH_P = C_PdT$, and $d(\Delta H) \cong \Delta C_{P} dT$ where $\Delta C_{p} = C_{p}{}^{\beta} - C_{p}{}^{\alpha} = \Delta a + \Delta bT + \Delta cT^{-2}$ (7.21) Eq (7.21) is often known as the **Kirchhoff's equation.**

$$
\frac{\text{dP}}{\text{d}T} = \frac{\Delta S}{\Delta V}
$$

- **For a precise calculation**, T and P dependency of S and V must be considered while integrating the Clapeyron equation.
- **An approximate calculation** of the phase boundaries between two condensed phases can be made by ignoring T and P dependency of H and V.
- In such cases, considering ΔS and ΔV as constant, integration of the Clapeyron equation becomes straightforward:

$$
P_2 - P_1 = \frac{\Delta S}{\Delta V} (T_2 - T_1)
$$

$$
P_2 - P_1 = \frac{\Delta H}{\Delta V} \left(\frac{T_2 - T_1}{T_1} \right)
$$

 ΔH = latent heat of fusion, etc.

Trouton'srule

The entropy of vapourisation of most elements is constant.

$$
\Delta S^G = \frac{\Delta H^G}{T_b} \cong 21 \text{ cal/deg-mol}
$$

Richards' rule

The entropy of fusion of most elements is constant.

$$
\Delta S^F = \frac{\Delta H^F}{T_F} \cong 9 \text{ J/mol-K}
$$

- The triple point of **S**, **L** and **G** phases can be determined if any two of the three equilibrium $(S \Leftrightarrow L, L \Leftrightarrow G, S \Leftrightarrow G)$ lines are known.
- Using the equations for $L \Leftrightarrow G$ and $S \Leftrightarrow G$ equilibrium lines, the triple point temperature and pressure is calculated as follows:

$$
P^{G} = A^{G} \exp(-\Delta H^{G}/RT)
$$

$$
P^{S} = A^{S} \exp(-\Delta H^{S}/RT)
$$

At the triple point (P_{tp} , T_{tp}), these two lines intersect. Thus

$$
P_{tp} = A^{G} \exp(-\Delta H^{G}/RT_{tp}) = A^{S} \exp(-\Delta H^{S}/RT_{tp})
$$

$$
T_{tp} = \frac{\Delta H^{S} - \Delta H^{G}}{R \ln(A^{S}/A^{G})} ; \quad P_{tp} = A^{S} \exp\left(\frac{\Delta H^{G}}{\Delta H^{G} - \Delta H^{S}}\right)
$$

