
Lecture 26

## Thermodynamics of Reactive Systems Thermochemistry and The Chemical Equilibrium

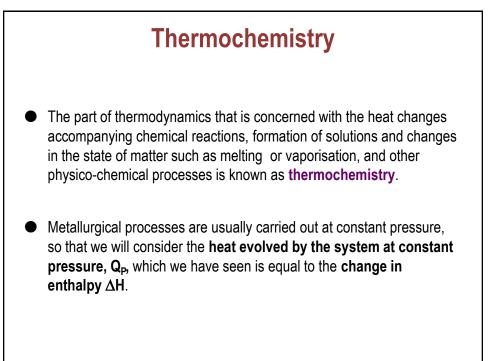


A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka



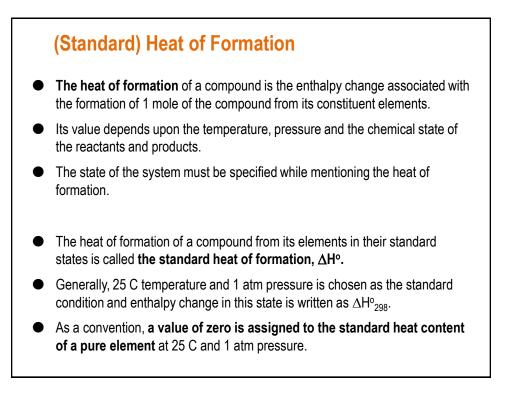
## **The Variance of Chemical Reaction**

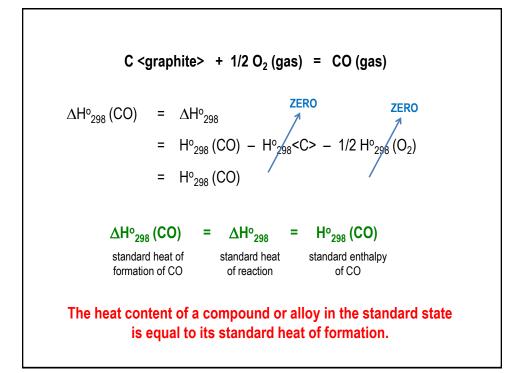
If a reactive system consists of E elements and C components, some of which are molecules, then the number of independent chemical reactions, or variance V, can be written as


$$I = \mathbf{C} - \mathbf{E} \tag{8.1}$$

### Example 1

System contains the element C and O (**E** = 2) and is made up of the molecule species  $O_2$ , CO and  $CO_2$  (**C** = 3). The variance, **V** = 3 - 2 = 1. This type of system is known as **univariant** system and exhibits one independent chemical reaction. In this case,  $2CO + O_2 = 2CO_2$ .


#### Example 2


System with elements C and O and molecule species C,  $O_2$ , CO and  $CO_2$ . The variance, V = 4 - 2 = 2. This type of system is known as **multivariant** system and exhibits more than one independent chemical reaction. In this case the two reactions can be:  $C + O_2 = CO_2$ ,  $2C + O_2 = 2CO$ .



## **Endothermic and Exothermic Reactions**

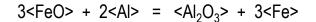
| Endothermic:<br>Exothermic:                                                     | ZnO + C = Zn + CO ;<br>$2AI + 3/2O_2 = AI_2O_3 ;$ | ∆H = +349 kJ<br>∆H = -1674 kJ |  |
|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|--|
|                                                                                 | n 1.5 moles of oxygen<br>nd, during the process,  |                               |  |
| Heat of Reactions                                                               |                                                   |                               |  |
| Change in Enthalpy = $\sum$ Enthalpy of Products – $\sum$ Enthalpy of Reactants |                                                   |                               |  |
|                                                                                 | $x A + y B = A_x B_y$                             |                               |  |
| $\Delta H = H(A_xB_y) - x H(A) - y H(B)$                                        |                                                   |                               |  |
| 3Fe <sub>2</sub> O <sub>3</sub> + CO                                            | = $2Fe_{3}O_{4} + CO_{2}$ ; $\Delta$              | H  = - 46700 J/mol            |  |





#### Example 8.1

Calculate the standard heat of reaction at 25 C and at 1 atm pressure of the reaction


in terms of per mole of  $Al_2O_3$  formed, per mole of Fe formed, per mole of FeO reacted, per mole of Al reacted and per g of Fe formed.

Given date:  $\Delta H_{298}^{\circ}$  < FeO> = -63.3 kcal/mol;  $\Delta H_{298}^{\circ}$  < Al<sub>2</sub>O<sub>3</sub>> = -400.0.

#### ANSWER

 $\Delta H^{o}_{298} = \Sigma H^{o}_{298} \text{ (product)} - \Sigma H^{o}_{298} \text{ (reactant)}$ =  $H^{o}_{298} < Al_2O_3 > + 3H^{o}_{298} < Fe > - 3H^{o}_{298} < FeO > - 2H^{o}_{298} < Al > -$ 

- = H°<sub>298</sub>< Al<sub>2</sub>O<sub>3</sub>> + 0 3H°<sub>298</sub><FeO> 0
- = (-400.0 kcal) 3(-63.3 kcal) = **-210.1 kcal**



Thus, the standard heat of reaction

=  $(-210.1 \text{ kcal})/1 \text{ mol of } Al_2O_3 \text{ formed} = -210.1 \text{ kcal/mol } Al_2O_3$ 

- = (-210.1 kcal) /3 mol of Fe formed = -70.03 kcal/mol Fe
- = (-210.1 kcal) /3 mol of FeO reacted = 70.03 kcal/mol FeO
- = (-210.1 kcal) /2 mol of Al reacted = 105.05 kcal/mol Al
- = (-210.1 kcal) /(3 x 56) g of Fe formed = -1.26 kcal/g Fe

## Heat of Combustion Heat of Transformation

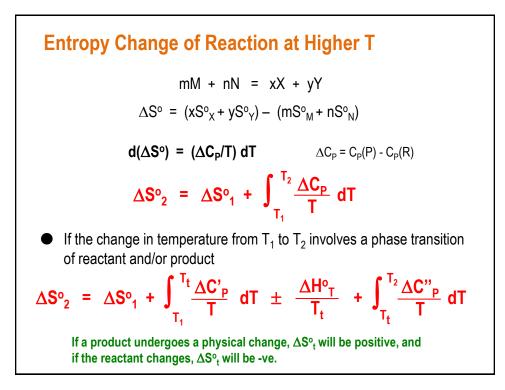
### **Hess's Law**

The change in heat content in a chemical reaction is the same whether it takes place in one or several stages, provided that the temperature and either pressure or volume remain constant.

| ∆H = -425.7 kJ          | (in single step)                                                     |
|-------------------------|----------------------------------------------------------------------|
| ∆H = - 591.6 kJ         |                                                                      |
| $\Delta$ H = + 258.6 kJ |                                                                      |
| ∆H = -17.6 kJ           |                                                                      |
| ∆H = -10.5 kJ           |                                                                      |
| ∆H = -361.1 kJ          |                                                                      |
| -                       | ΔH = - 591.6 kJ<br>ΔH = + 258.6 kJ<br>ΔH = -17.6 kJ<br>ΔH = -10.5 kJ |

A large cumulative error can quickly build up this way from the summation of experimental errors of individual heat of formation. So Hess's law must be applied with caution.

## Enthalpy Change of Reaction at Higher T


$$mM + nN = xX + yY$$
  

$$\Delta H^{\circ} = (xH^{\circ}_{X} + yH^{\circ}_{Y}) - (mH^{\circ}_{M} + nH^{\circ}_{N})$$
  

$$d(\Delta H^{\circ}) = \Delta C_{P} dT \qquad \Delta C_{P} = C_{P}(P) - C_{P}(R)$$
  

$$\Delta H^{\circ}_{2} = \Delta H^{\circ}_{1} + \int_{T_{1}}^{T_{2}} \Delta C_{P} dT \qquad The Kirchhoff's equation$$
  
If the change in temperature from T<sub>1</sub> to T<sub>2</sub> involves a phase transition of reactant and/or product  

$$\Delta H^{\circ}_{2} = \Delta H^{\circ}_{1} + \int_{T_{1}}^{T_{1}} \Delta C'_{P} dT \pm \Delta H^{\circ}_{t} + \int_{T_{t}}^{T_{2}} \Delta C''_{P} dT$$
  
If a product undergoes a physical change,  $\Delta H^{\circ}_{t}$  will be positive, and if the reactant changes,  $\Delta H^{\circ}_{v}$  will be -ve.



### Example 8.4

Calculate the standard entropy change for the reaction  $\langle Pb \rangle + 1/2(O_2) = \langle PbO \rangle$  at 800 K from the following data:

$$\begin{split} S^{o}_{298} < PbO > &= 16.20 \text{ cal/deg/mol}, \ S^{o}_{298} < Pb > &= 15.50, \ S^{o}_{298}(O_2) = 49.02 \\ T_m, Pb &= 600 \text{ K}, \ L_f, Pb &= 1150 \text{ cal/mol} \\ C_p < PbO > &= 10.60 + 4.0x10^{-3} \text{ T cal/deg/mol} \\ C_p < Pb > &= 5.63 + 2.33x10^{-3} \text{ T}, \ C_p \{Pb\} = 7.75 - 0.74x10^{-3} \text{ T} \\ C_p (O_2) &= 7.16 + 1.0x10^{-3} \text{ T} - 0.4x10^5 \text{ T}^{-2} \end{split}$$

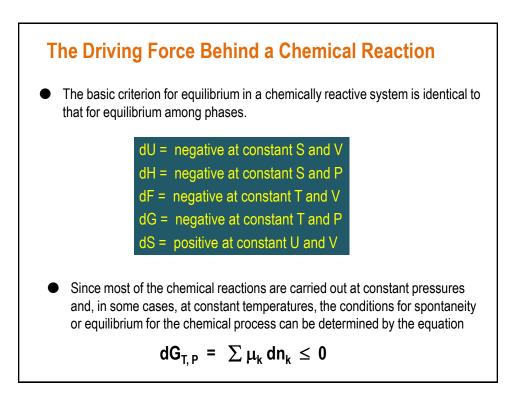
ANSWER

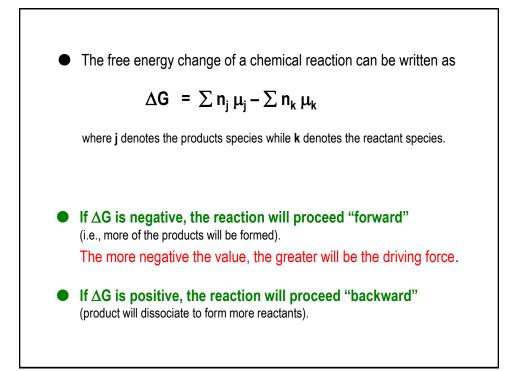
$$\Delta S^{\circ}_{800} = \Delta S^{\circ}_{298} + \int_{298}^{600} (\Delta C'_{P}/T) dT - (L_{f}/600) + \int_{600}^{800} (\Delta C''_{P}/T) dT$$
  
$$\Delta S^{\circ}_{298} = \sum S^{\circ}_{298} (\text{products}) - \sum S^{\circ}_{298} (\text{reactants})$$
  
$$= S^{\circ}_{298} < \text{PbO} - S^{\circ}_{298} < \text{Pb} - 1/2 S^{\circ}_{298} (O_{2})$$
  
$$= 16.20 - 15.50 - 1/2 (49.02) = -23.81 \text{ cal/deg}$$

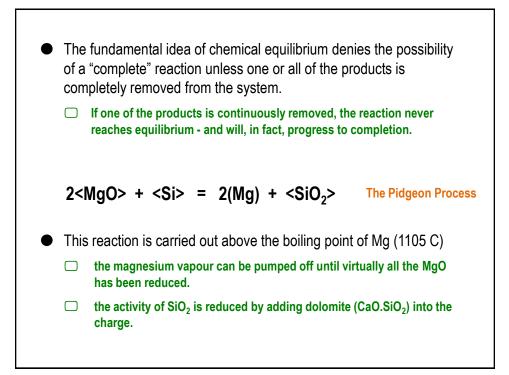
$$\Delta \mathbf{C'_{P}} = C_{P} < PbO > - C_{P} < Pb > - 1/2C_{P}(O_{2})$$

$$= 1.39 + 1.17x10^{-3}T + 0.2x10^{5}T^{-2} \text{ cal/deg/mol}$$

$$\int_{298}^{600} \frac{\Delta \mathbf{C'_{P}}}{T} dT = \int_{298}^{600} (1.39 + 1.17x10^{-3}T + 0.2x10^{5}T^{-2}) \frac{dT}{T} = 1.41 \text{ cal/mol}$$


$$\Delta \mathbf{C''_{P}} = C_{P} < PbO > - C_{P} \{Pb\} - 1/2C_{P}(O_{2})$$


$$= -0.73 + 4.24x10^{-3}T + 0.2x10^{5}T^{-2} \text{ cal/deg/mol}$$


$$\int_{600}^{800} \frac{\Delta \mathbf{C''_{P}}}{T} dT = \int_{600}^{800} (-0.73 + 4.24x10^{-3}T + 0.2x10^{5}T^{-2}) \frac{dT}{T} = 0.65 \text{ cal/mol}$$

$$\Delta \mathbf{S^{o}}_{800} = -23.81 + 1.41 - (1150/600) + 0.65 = -23.67 \text{ cal/mol}$$

### The Chemical Equilibrium Most of the materials and metallurgical process are chemically reactive processes where one or more chemical reactions has occurred. the extraction and refining of metals, $\square$ the production of alloys, the productions of plastics and polymers, etc. The maximum extent of a certain chemical reaction is governed by thermodynamic equilibrium the maximum conversion of the reactants to products is calculable at a $\square$ given temperature, pressure and feed composition according to the law of thermodynamics. it is impossible at a given set of conditions to obtain a greater conversion than that predicted by chemical equilibrium calculations. Thus such calculations serve as a screening device to determine if a certain reaction has any potential industrial use.







# **Next Class**

Lecture 27

Thermodynamics of Reactive Systems The Equilibrium Constant