Lecture 26

Thermodynamics of Reactive Systems Thermochemistry and The Chemical Equilibrium

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

The Variance of Chemical Reaction

 If a reactive system consists of **E** elements and **C** components, some of which are molecules, then the number of independent chemical reactions, or variance **V**, can be written as

$$
\mathbf{V} = \mathbf{C} - \mathbf{E} \tag{8.1}
$$

Example 1

System contains the element C and O **(E = 2)** and is made up of the molecule species O_2 , CO and CO₂ (C = 3). The variance, $V = 3 - 2 = 1$. This type of system is known as **univariant** system and exhibits one independent chemical reaction. In this case, $2CO + O_2 = 2CO_2$.

Example 2

System with elements C and O and molecule species C, O_2 , CO and CO₂. The variance, $V = 4 - 2 = 2$. This type of system is known as **multivariant** system and exhibits more than one independent chemical reaction. In this case the two reactions can be: $C + O_2 = CO_2$, $2C + O_2 = 2CO$.

Endothermic and Exothermic Reactions

Example 8.1

Calculate the standard heat of reaction at 25 C and at 1 atm pressure of the reaction

$$
3 < FeO > + 2 < A| > = < A|_{2}O_{3} > + 3 < Fe>
$$

in terms of per mole of Al₂O₃ formed, per mole of Fe formed, per mole of FeO reacted, per mole of Al reacted and per g of Fe formed.

Given date: $\triangle H^o{}_{298}$ <FeO> = -63.3 kcal/mol; $\triangle H^o{}_{298}$ <Al₂O₃> = -400.0.

ANSWER

 ΔH°_{298} = ΣH°_{298} (product) – ΣH°_{298} (reactant) = H^o₂₉₈<Al₂O₃> + 3H^o₂₉₈<Fe> – 3H^o₂₉₈<FeO> – 2H^o₂₉₈<Al> = H°_{298} < H°_{298} + 0 - $3H^{\circ}_{298}$ <FeO> - 0 = (-400.0 kcal) – 3(-63.3 kcal) = **–210.1 kcal**

Thus, the standard heat of reaction

- = (-210.1 kcal) /1 mol of Al₂O₃ formed = **-210.1 kcal/mol Al₂O₃**
- = (-210.1 kcal) /3 mol of Fe formed = **- 70.03 kcal/mol Fe**
- = (-210.1 kcal) /3 mol of FeO reacted = **- 70.03 kcal/mol FeO**
- = (-210.1 kcal) /2 mol of Al reacted = **- 105.05 kcal/mol Al**
- = (-210.1 kcal) /(3 x 56) g of Fe formed = **- 1.26 kcal/g Fe**

Heat of Combustion Heat of Transformation

Hess's Law

The change in heat content in a chemical reaction is the same whether it takes place in one or several stages, provided that the temperature and either pressure or volume remain constant.

A large cumulative error can quickly build up this way from the summation of experimental errors of individual heat of formation. So Hess's law must be applied with caution.

Enthalpy Change of Reaction at Higher T

$$
mM + nN = xX + yY
$$

\n
$$
\Delta H^{\circ} = (xH^{\circ}x + yH^{\circ}y) - (mH^{\circ}M + nH^{\circ}N)
$$

\n
$$
d(\Delta H^{\circ}) = \Delta C_{P} dT \qquad \Delta C_{P} = C_{P}(P) - C_{P}(R)
$$

\n
$$
\Delta H^{\circ} = \Delta H^{\circ} + \int_{T_{1}}^{T_{2}} \Delta C_{P} dT \qquad \text{The Kirchhoff's equation}
$$

\n• If the change in temperature from T_{1} to T_{2} involves a phase transition
\nof reactant and/or product
\n
$$
\Delta H^{\circ} = \Delta H^{\circ} + \int_{T_{1}}^{T_{1}} \Delta C^{\circ} P dT \pm \Delta H^{\circ} + \int_{T_{1}}^{T_{2}} \Delta C^{\circ} P dT
$$

\nIf a product undergoes a physical change, ΔH° _t will be positive, and
\nif the reactant changes, ΔH° _t will be -ve.

Example 8.4

Calculate the standard entropy change for the reaction <Pb> + $1/2(O_2)$ = <PbO> at 800 K from the following data:

 \mathbb{S}°_{298} <PbO> = 16.20 cal/deg/mol, \mathbb{S}°_{298} <Pb> = 15.50, $\mathbb{S}^{\circ}_{298}(O_2)$ = 49.02 T_m , Pb = 600 K , L_f, Pb = 1150 cal/mol C_P <PbO> = 10.60 + 4.0x10⁻³ T cal/deg/mol C_P <Pb> = 5.63 + 2.33x10⁻³ T, C_P {Pb} = 7.75 – 0.74x10⁻³ T $\textsf{C}_{\textsf{P}} \left(\textsf{O}_2 \right)$ = 7.16 + 1.0x10⁻³ T – 0.4x10⁵ T⁻²

ANSWER

$$
\Delta S^{\circ}{}_{800} = \Delta S^{\circ}{}_{298} + \int_{298}^{600} (\Delta C^{\circ}{}_{p}/T) dT - (L_{f}/600) + \int_{600}^{800} (\Delta C^{\circ}{}_{p}/T) dT
$$

$$
\Delta S^{\circ}{}_{298} = \sum S^{\circ}{}_{298}(\text{products}) - \sum S^{\circ}{}_{298}(\text{reactants})
$$

$$
= S^{\circ}{}_{298} PbO - S^{\circ}{}_{298} Pb > - 1/2 S^{\circ}{}_{298}(O_{2})
$$

$$
= 16.20 - 15.50 - 1/2 (49.02) = -23.81 \text{ cal/deg}
$$

$$
\Delta C'_{p} = C_{p} < PbO> - C_{p} < Pb> - 1/2C_{p}(O_{2})
$$
\n
$$
= 1.39 + 1.17 \times 10^{3} \text{ T} + 0.2 \times 10^{5} \text{ T}^{2} \text{ cal/deg/mol}
$$
\n
$$
\int_{298}^{600} \frac{\Delta C'_{p}}{\text{T}} d\text{T} = \int_{298}^{600} (1.39 + 1.17 \times 10^{3} \text{ T} + 0.2 \times 10^{5} \text{ T}^{2}) \frac{\text{dT}}{\text{T}} = 1.41 \text{ cal/mol}
$$
\n
$$
\Delta C''_{p} = C_{p} < PbO> - C_{p}\{Pb\} - 1/2C_{p}(O_{2})
$$
\n
$$
= -0.73 + 4.24 \times 10^{3} \text{ T} + 0.2 \times 10^{5} \text{ T}^{2} \text{ cal/deg/mol}
$$
\n
$$
\int_{600}^{800} \frac{\Delta C''_{p}}{\text{T}} d\text{T} = \int_{600}^{800} (-0.73 + 4.24 \times 10^{3} \text{ T} + 0.2 \times 10^{5} \text{ T}^{2}) \frac{\text{dT}}{\text{T}} = 0.65 \text{ cal/mol}
$$
\n
$$
\Delta S^{o}_{800} = -23.81 + 1.41 - (1150/600) + 0.65 = -23.67 \text{ cal/mol}
$$

Next Class

Lecture 27

Thermodynamics of Reactive Systems The Equilibrium Constant