Lecture 27

Thermodynamics of Reactive Systems The Equilibrium Constant

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

The Equilibrium Constant

The law of mass action

"The rate of any chemical reaction is proportional to the active masses of the reacting substances"

- By active masses, it means the activities of the solid or liquid reacting substances, or partial pressures in the case of gaseous substances.
- If pure solids and liquids are involved in a reaction, their active masses, or activities, can be regarded as unity.

$$
mM + nN = xX + yY
$$

Rate of forward reaction = k_1 . $(a'_M)^m$. $(a'_N)^n$ Rate of reverse reaction = k_2 . $(a'_x)^x$. $(a'_y)^y$

where **a'^j** etc. are the activities of element **j** at any state of the reaction, and **k1** and **k²** are proportionality constants.

At equilibrium, the rates of forward and reverse reactions are equal.

$$
k_1 \cdot (a_M)^m \cdot (a_N)^n = k_2 \cdot (a_X)^x \cdot (a_Y)^y
$$

where **a^j** is the concentration of element at equilibrium.

$$
K = \frac{K_1}{K_2} = \frac{(a_x)^x (a_y)^y}{(a_M)^m (a_N)^n}
$$

where K is the equilibrium constant of the reaction.

$$
K_{a} = \left(\frac{(a_{x})^{x} \cdot (a_{y})^{y}}{(a_{M})^{m} \cdot (a_{N})^{n}}\right)_{e}
$$

The suffice **e** used in the above equation indicates that the activities are of equilibrium values.

Free Energy and Equilibrium Constant $mM + nN = xX + yY$ $\Delta G = (x\mu_X + y\mu_Y) - (m\mu_M + n\mu_N)$ $\mu_k = \mu^o_k + RT \ln a_k$ $\Delta G = \{ (x\mu_{\alpha}^{\circ} + y\mu_{\alpha}^{\circ}) - (m\mu_{\alpha}^{\circ} + n\mu_{\alpha}^{\circ}) \}$ + RT $\{ (x \ln a_x + y \ln a_y) - (m \ln a_m + n \ln a_y) \}$ $(a_x)^x$. $(a_y)^y$ **(a**_M)^m **.** $(a_{N})^{n}$ **ne** $\Delta G = \Delta G^{\circ}$ + ΔG = **Chemical Affinity** or Gibbs free energy change of a reaction

$$
\Delta G = \Delta G^{\circ} + RT \ln \left(\frac{(a_{x})^{x} \cdot (a_{y})^{y}}{(a_{M})^{m} \cdot (a_{N})^{n}} \right)_{ne}
$$
\n
$$
Q = \text{Activity Quotient} = \left(\frac{(a_{x})^{x} \cdot (a_{y})^{y}}{(a_{M})^{m} \cdot (a_{N})^{n}} \right)_{ne}
$$
\n
$$
\Delta G = \Delta G^{\circ} + RT \ln Q
$$
\nIf the reactants and products are in equilibrium with each other, $\Delta G = 0$, and\n
$$
0 = \Delta G^{\circ} + RT \ln \left(\frac{(a_{x})^{x} \cdot (a_{y})^{y}}{(a_{M})^{m} \cdot (a_{N})^{n}} \right)
$$

e

RT

Example 8.6

Calculate the equilibrium constant for the reaction **<NiO> + (H²) = <Ni> + (H2O)** at 750 C from the following data:

 ΔG° = $- RT \ln K_{a}$ and K_{a} = $\exp \left(\frac{-\Delta G^{\circ}}{RT} \right)$

and

 $\langle Ni \rangle$ + 1/2(O₂) = $\langle NiO \rangle$; ΔG° = -58450 + 23.55 T cal $(H_2) + 1/2(O_2) = (H_2 O)$; $\Delta G^{\circ} = -58900 + 13.10$ T cal

ANSWER

$$
\angle NIO> = \angle Ni> + 1/2(O_2)
$$
; $\Delta G^{\circ} = +58450 - 23.55$ T cal
\n $(+)$ $(H_2) + 1/2(O_2) = (H_2O)$; $\Delta G^{\circ} = -58900 + 13.10$ T cal
\n $\angle NIO> + (H_2) = \angle Ni> + (H_2O)$; $\Delta G^{\circ} = -450 - 10.45$ T cal

At 750 C (or, 1023 K), $\Delta G^{\circ} = -450 - 10.45$ (1023) = -11140.35 cal/mol

 K_a = exp $\frac{-(-11140.35 \text{ cal/mol})}{(1.087 \text{ cal}/{\text{deg/mol}}) \times (107 \text{ cm})}$ (1.987 cal/deg/mol) x (1023 K) **= 239.98**

The importance of **van't Hoff isotherm** an be understood by considering the thermodynamic possibility of the reduction of alumina by carbon at 1500 C:

 $Al_2O_3 + 3C = 2Al + 3CO; \quad \Delta G^0_{1773} = +151000 J$

$$
\Delta G_{1773} = \Delta G^{\circ}{}_{1773} + RT \ln \frac{(a_{Al})^2 \cdot (p_{CO})^3}{(a_{Al_2O_3}) \cdot (a_C)^3}
$$

$$
\Delta G_{1773} = 151000 + 14740.72 \ln{(p_{\text{CO}})^3}
$$

So it is seen that if p_{CO} >1, clearly there is no possibility of a spontaneous change because ΔG_{1773} is positive.

However, if the partial pressure of CO gas can be reduced, for example, by placing the system in a vacuum, the value of ΔG will decrease.

Thus, reaction becomes thermodynamically possible if p_{co} is lowered sufficiently.

Example 8.7

Would an atmosphere containing 15 % CO₂, 5 % CO and 80 % N₂ oxidise nickel at 1000 K? Given data:

> $\langle Ni \rangle$ + 1/2(O₂) = $\langle NiO \rangle$; K₁ = 5.76x10⁷ at 1000 K $(CO) + 1/2(O_2) = (CO_2)$; $K_2 = 1.68 \times 10^{10}$ at 1000 K

ANSWER

In the given atmosphere the following oxidation reaction of nickel could occur:

<Ni> + (CO²) = <NiO> + (CO)

Nickel would be oxidised if ΔG = RT In (Q/K) for the above oxidation reaction is negative. In the equation, ΔG is negative if Q/K is less than one.

Now, given that, $K = (p_{CO}/p_{CO2})_e = K_1/K_2 = 3.43 \times 10^{-3}$ at 1000 K

and $Q = (p_{CO} / p_{CO2})_{actual} = (0.05/0.15) = 0.333$ at 1000 K

Hence, Q/K = 96.21. Now, since Q/K >1, ∆G will be positive for the reaction. Thus, the reaction would not occur, that is, **nickel would not be oxidised**.

Example 8.8

Calculate the equilibrium extent of decomposition of nitrogen tetroxide due to the chemical reaction $(N_2O_4) = 2(NO_2)$ at 25 C and 1 atm. What will be the equilibrium composition of the gas mixture? Given data: ΔG°_{298} = 4644 J/mol.

ANSWER

The equilibrium constant for the reaction

$$
K = (p_{NO2})^2 / p_{N2O4}) = \exp(-\Delta G_{298} / RT)
$$

$$
(p_{NO2})^2 / p_{N2O4} = 0.153
$$

Considering that all the gases are in their ideal conditions, changing the partial pressure to mole fraction,

$$
(X_{NO2})^2 / X_{N2O4} = 0.153
$$

Let **a** be the equilibrium extent of the decomposition of N_2O_4 according to the reaction $(N_2O_4) = 2(NO_2)$

 $(X_{NO2})^2 / X_{N2O4} = 0.153$ 4a² / (1 – a 2) = 0.153 ; **a = 0.19**

Hence, about 19 % decomposition of N_2O_4 would occur and the equilibrium composition of the gas mixture would be:

$$
X_{N2O4} = (1-a) / (1+a) = 0.68
$$
, or 68%
 $X_{NO2} = 2a / (1+a) = 0.32$, or 32%

\n- Now, the Gibbs-Helmholtz equation states that
\n- $$
\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = \Delta H^{\circ} + T \left(\frac{\partial (\Delta G^{\circ})}{\partial T} \right)_P
$$
\n
$$
\Delta G^{\circ} - \Delta H^{\circ} = T \left(\frac{\partial (\Delta G^{\circ})}{\partial T} \right)_P
$$
\n
\n- Now since\n
$$
T \left(\frac{\partial (\Delta G^{\circ})}{\partial T} \right)_P = \Delta G^{\circ} - RT^2 \left(\frac{\partial \ln K}{\partial T} \right)_P
$$
\n
$$
\Delta G^{\circ} - \Delta H^{\circ} = \Delta G^{\circ} - RT^2 \left(\frac{\partial \ln K}{\partial T} \right)_P
$$
\n
$$
\left(\frac{\partial \ln K}{\partial T} \right)_P = \frac{\Delta H^{\circ}}{RT^2} \quad \text{or,} \quad d \ln K = \frac{\Delta H^{\circ}}{RT^2} dT
$$
\nThis equation is known as **van't Hoff isochore, and it shows the relationship between the equilibrium constant and temperature of the reaction.**\n
\n

d ln K =
$$
\frac{\Delta H^{\circ}}{RT^2}
$$
 dT
\n
\n \Box K grows with increasing temperature in processes attended by
\nthe absorption of heat (ΔH°>0).
\n \Box If the standard reaction is exothermic, ΔH°<0, then K grows
\nwith diminishing temperature.
\n
\n**Assuming that ΔH° is constant over the temperature range, integration of
\nthe equation will result
\n
\nln K = $-\frac{\Delta H^{\circ}}{RT}$ + constant
\n
\nSo if the standard enthalpy change for a reaction and the equilibrium
\nconstant at one particular temperature is known, calculation of
\nequilibrium constant for the reaction at some other temperature can
\nbe calculated by using this equation.**

г

Next Class

Lecture 28

Thermodynamics of Reactive Systems Applications of the Ellingham Diagram