Lecture 28

Thermodynamics of Reactive Systems Applications of the Equilibrium Constant

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

1. The Stability of Compound• The equilibrium constant of a reaction can be used to predict the relative stability of a compound. $4Cu + O_2 = 2Cu_2O$; $K = \frac{(a_{Cu2O})^2}{(a_{Cu})^2 \cdot p_{O2}} = 10^3$ $4/3Al + O_2 = 2/3Al_2O_3$; $K = \frac{(a_{Al2O3})^{2/3}}{(a_{Al})^{4/3} \cdot p_{O2}} = 10^{20}$ $8Fe + N_2 = 2Fe_4N$; $K = \frac{(a_{FeAN})^2}{(a_{Fe})^8 \cdot p_{N2}} = 10^{-5}$

• Assuming that we have pure metals and pure oxides and nitrides, we can calculate the equilibrium partial pressure of oxygen and nitrogen for these reactions.

Compound Formed	Equilibrium Pressure at 1600 C	
Cu ₂ O	p _{O2} = 10 ⁻³	
Al ₂ O ₃	p _{O2} = 10 ⁻²⁰	
Fe ₄ N	p _{O2} = 10 ⁵	

• These values of equilibrium pressures are pressures below which the compounds will dissociate, above which they will not dissociate.

For this reasons these pressures (p_{02}) and (p_{N2}) are called the **dissociation pressures** of relevant oxides and nitrides.

Oxidation behaviour of the mixture CO/CO₂

$$2CO + O_2 = 2CO_2$$

If the total pressure is 1 atm, then

$$K_p = \frac{(p_{CO2})^2}{(p_{CO})^2 \cdot (pO_2)}$$

and the oxygen potential

$$p_{O2} = \left(\frac{p_{CO2}}{p_{CO}}\right)^2 \cdot \frac{1}{K_p}$$

To decrease the oxygen potential of an atmosphere, increase the relative concentration of the reducing gas, CO.

Example

In a steel annealing furnace, a gaseous atmosphere of CO and CO_2 gases could be maintained to prevent the oxidation of iron during heat treatment.

$$(CO_2) + \langle Fe \rangle = \langle FeO \rangle + (CO)$$
 $K = \frac{a_{FeO} \cdot p_{CO}}{p_{CO2} \cdot a_{Fe}} \approx \frac{p_{CO}}{p_{CO2}}$

Temperature	500 C	700 C	1000 C
Equilibrium constant	0.83	1.43	2.50

Consider a gas mixture containing **30% CO** and **20% CO₂** and 50% N₂.

The activity quotient of the atmosphere, $\mathbf{Q} = (pCO/pCO_2) = 0.30/0.20 = 1.50$.

- If we use this mixture at 700 C, then (Q/K) > 1, and the reaction would not occur. We would have an excess amount of CO than the equilibrium amount.
- If the temperature of the system is increased to 1000 C, then (Q/K) <1, and the reaction would occur.

