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Topics to Discuss

@® The Ellingham Diagrams

() Salient features and limitations




Patterns of Behaviour
in the Reactive Systems

@® We have seen that, evaluation of the equilibrium constant for a reaction
is the key to the solution of practical problems in reacting systems.

@® The equilibrium constant is, in turn, most frequently computed from
information about the standard free energy change for the reaction
through equation

AG® = -RTInK,

@® Values of the standard free energy change for chemical reactions and
other thermodynamic functions are presented in the literature, usually as
graphs or tables.

@® The diagrams of most practical importance are those for oxides, sulphides,
halides, carbides and nitirdes. Among those, the most frequently used
diagram is the Ellingham diagram.

The Ellingham Diagrams

@® Ellingham plotted the experimentally determined standard free energy of
formation, AGP, of various oxides (and sulphides) using one mole of oxygen
with temperature.

2X

2
TM + 02 = T MxOy AGY = AHO - TAS?

@® Ellingham pointed out that, the standard enthalpy and entropy of formation
of a compound do not change significantly with the temperature as long as
there is no change of state of product or reactant.

AG’r & AHgq- TAS%g

@ Thus, the general forms of AG®-T relationships could be approximated
to straight lines over temperature ranges

AG% = A+BT A=AH% and B=-AS’,
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constant K, plotted as AG°-T space corresponding to
the Ellingham diagram.

Limitations of the Ellingham diagram

1. AGYis the standard free energy change of the reaction and does not
take into account the activities of reactants or products which will
significantly be different from unity.

2<MgO0> + <Si> = 2(Mg) + <Si0,> AGY,,, = +273 k)

(ng)Z - (agi02)

AG = AG° + RT In
1473 1473 (aMgo)z (2e)

If ppg @and ag;g, can be lowered sufficiently, AG can be made negative even
though AGP is positive.




In the Pidgeon process for the commercial production of magnesium, py,,
is lowered by applying a vacuum of about 10 atm and ag,o, is reduced by
adding CaO in the charge.

CaO reacts with SiO, to form 2Ca0.SiO, slag and lowers the activity of
silica in the product. A basic slag reduces the activity of SiO, down to
0.001 and the strong attraction of CaO for SiO, reduces the possibility of
loss of MgO as magnesium silicate.

The magnesium is evolved as a gas, which is condensed in massive form
without reoxidation.

Thus, when the activities of reactants or products differ significantly from
unity, the van't Hoff isotherm gives a better indication of the
thermodynamic possibilities of the reaction than AG® and the Ellingham
diagram.

No account of the kinetics of the reaction is taken during the
measurements of thermodynamic variables.

From a thermodynamic aspect, the reaction
2PbO +C = 2Pb + CO,

will take place at 100 C, because AGC is negative.

But a blast furnace charge of solid lead oxide, coke and limestone will remain
virtually unaltered at 100 C because the rate of chemical reaction would be
too slow.

But if preheated air is introduced via the tuyeres of the furnace the coke will
burn in the tuyere zone and the following overall reaction occurs

2C+0, = 2C0; AH = -226 kI

The reaction is exothermic so, once started, the reaction continues and soon
the temperature of the furnace rises to about 1200 C and the reduction of
PbO takes place.




3. The accuracy of data and the difficulty in reading the distance
between two closely spaced curves do not permit to obtain a
definite conclusion when the lines are much less than 20-40 kJ
apart.
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