Lecture 31

Thermodynamics of Interfaces Surface Free Energy and Surface Tension

A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka

Interfaces in Metallic Systems

1. Free surfaces of crystal (solid/vapour interface)

- □ it is the boundary between the condensed phase (solid/liquid) and it is vapour phase (generally air)
- vaporisation and condensation transformation, reactions between gaseous and condensed phase, <u>nucleation</u> of gas bubbles inside a liquid metal.

2. Grain boundaries (α/α interface)

- □ separates crystals with the same composition and crystal structure, but a different orientation in space
- important in <u>recrystallisation</u>, (i.e. transformation of a highly deformed grain structure into new undeformed grains)

3. Interphase interfaces $(\alpha/\beta \text{ interfaces})$

- separate two different phases with different crystal structures and/or compositions
- plays an important role in determining the <u>kinetics of phase transformations</u>, reduction of solid oxide by gas mixture during <u>extraction of metal</u> (such as, iron making), the transfer of substances between liquid slag phase and liquid metal in <u>refining process</u> (such as steel making), and <u>corrosion of metals</u>.

	-	-	-	
ТΔ	RI	н.	q	1

Average surface free energies of selected metals.

Crystal	Temperature (C)	Surface tension (N/m)
Water	100	0.059
Water	20	0.073
Sodium chloride	910	0.106
Steelmaking slag	1600	0.400
Mercury	20	0.480
Gold	1130	1.100
Copper	1150	1.100
Steel (0.4 % C)	1600	1.560

At equilibrium, the gas pressure inside the bubble must be equal to the total pressure

$$\mathbf{P}_{\mathbf{B}} = \mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{M}} + \mathbf{P}_{\gamma} \tag{9.1}$$

$$\mathbf{P}_{\mathbf{B}} = \mathbf{P}_{\mathbf{A}} + \mathbf{h}\rho \mathbf{g} + 2\gamma/\mathbf{r}$$
(9.2)

- P_B increases as the depth of bubble beneath the metal h increases, and the radius of bubble r decreases
- If a gas bubble to nucleate homogeneously, the radius of the bubble must be very small, perhaps of the order of the size of a single molecule.
 So the P_v term of Eq.(9.2) is expected to be very high.

Consider the possibility of a gas bubble nucleating homogeneously with a radius 10^{-9} m at a depth 0.3 m below the surface of liquid steel.

g = 9.81 m/s² ρ = 7400 kg/m³ γ = 1.56 N/m

Using Eq.(9.2) and 1 atm = 1.01×10^5 N/m², we get

 $P_B = P_A + h\rho g + 2\gamma/r$ $P_B = 1 \text{ atm} + 0.22 \text{ atm} + 30900 \text{ atm} \cong 30900 \text{ atm}$

- The amount of gas pressure inside the gas bubble required for its homogeneous nucleation is roughly equal to the pressure solely required to create and maintain the gas/metal surface of the bubble against the surface tension.
- The atmospheric pressure and the metal head pressure have a very negligible effect against nucleation of the gas bubble.

Does vacuum degassing has any effect on degassing?

Rosegger's Law

- The rate of removal of slag component depends upon their composition as well as their size.
 - □ Small alumina rich particles separate more rapidly than the larger silica particles.
 - The small difference in density could not account for this anomaly
 - □ It is the interfacial tension between the particles and the liquid steel that controls this abnormal behaviour.
- A high interfacial tension between the particles and the liquid metal would create a small attractive force between the liquid steel and the oxide particles and, consequently, a small dragging force opposing the motion of the particle. So separation of oxide particles would be easy.
- On the other hand, a low interfacial tension would cause a large attractive force and, consequently, a high dragging force opposing the motion of the particle causing a slower rate of separation.

Example: The heterogeneous nucleation of a gas bubble on top of a solid phase (inclusion, etc.) floating around inside a liquid metal, creating a common boundary between a liquid, a solid and a gas. Gas, G Liquid, L Gas, G iauid. γ_{lg} Ygs Ygs γ_{LS} Υıs Solid, S Solid, S (a) (b) FIGURE 9.6 Contact between gas (G), liquid (L) and solid (S) phases where the solid phase has a flat surface and θ is the contact angle. (a) $\theta \mathbb{P} < 90^{\circ}$, (b) $\theta \mathbb{P} > 90^{\circ}$ $\gamma_{GS} = \gamma_{LG} \cos \theta_{LG} + \gamma_{LS}$ (9.4) $\mathbf{k} = \cos \theta_{LG} = \frac{\gamma_{GS} - \gamma_{LS}}{\gamma_{LG}}$ k = wetting coefficient

TABLE 9.2

Contact angles of different interfaces. (measured in air unless otherwise stated)

Liquid phase / solid phase	Contact angle, θ
Water / glass	0
Tin / copper	25
Water / sphalerite (ZnS)	30
Lead / steel (in vacuum)	70
Water / steel	70-90
Water / paraffin wax	110
Mercury / glass	130-150
Mercury / steel	150

Steel refining process

- FeO and FeS have a φ value close to zero degree and thus FeS forms along the grain boundary. Being brittle, it weakens the structure, which is known as cold shortness.
- □ To remove the harmful effect of sulphur, manganese is added to steel. MnS, having $\phi > 180^\circ$, does not wet steel at the grain boundary and precipitates throughout the steel matrix.

Grain growth/coarsening process

During heating, the metallic structure will rearrange itself to reduce its grain boundary energy by increasing its average grain size reducing the grain boundary to volume ratio.

Sintering process

Pores between the powder particles tend to become spherical and contract until a substantially sound solid part is produced.

Example

A liquid silicate with surface tension of 500 ergs/cm² makes contact with a polycrystalline oxide with an angle θ = 45° on the surface of the oxide. If mixed with the oxide, it forms liquid globules at three grain intersections. The average dihedral angle ϕ is 90°. If we assume the interfacial tension of the oxide-oxide interface, without the silicate liquid is 100 dynes/cm, compute the surface tension of the oxide.

