Lecture 34

Statistical Thermodynamics

Conditions for Equilibrium

A. K. M. B. Rashid

Professor, Department of MME BUET, Dhaka

Topics to Discuss

- Conditions for Equilibrium in Statistical Thermodynamics
- Calculation of macroscopic properties from Partition Function

Conditions for Equilibrium in Statistical Thermodynamics

- In statistical thermodynamics, a process is described by a change in the macrostate for the system.
 - ☐ the number of particles in some or all of the energy states changes or the particles redistribute over the energy levels in the system.
 - the number of particles in some energy levels increases while those in others decrease.
- In statistical thermodynamics, the equilibrium state is that particular macrostate which has maximum entropy when it is isolated.
 - the equilibrium state is a particular set of values of the number of particles that define macrostates: $(n_1, n_2,, n_r)_{eq}$.

General strategy for finding a constrained maximum of entropy

- 1. Write a differential expression for the change in entropy.
- 2. Write differential expressions for the constraints.
- **3.** Use the isolation constraints to eliminate dependent variables.
- Set the coefficients of each of the differentials in the new expression of dS equal to zero.

$$S = k \ln \Omega$$
 $\Omega = \frac{N_0!}{n_1! \quad n_2! \dots n_r!}$

$$S = k \ln \left(\frac{N_0!}{n_1! \cdot n_2! \cdot \dots \cdot n_r!} \right)$$

$$S = k \left[\ln N_0! - \sum_{i=1}^{r} \ln (n_i!) \right]$$

Stirling's approximation:

 $\ln x! \cong x \ln x - x$

$$S = k \left[(N_0 \ln N_0 - N_0) - \sum_{i=1}^{r} (n_i \ln n_i - n_i) \right]$$

$$S = k \left[(N_0 \ln N_0 - N_0) - \sum_{i=1}^{r} (n_i \ln n_i - n_i) \right]$$

$$S = k \left(N_0 \ln N_0 - N_0 - \sum_{i=1}^r n_i \ln n_i + \sum_{i=1}^r n_i \right)$$

$$S = k \left(\sum_{i=1}^{r} n_i \ln N_0 - \sum_{i=1}^{r} n_i \ln n_i \right)$$

$$N_0 = \sum_{i=1}^{r} n_i$$

$$S = k \sum_{i=1}^{r} n_i \left(\ln N_0 - \ln n_i \right)$$

$$S = -k \sum_{i=1}^{r} n_i \ln \left(\frac{n_i}{N_0} \right)$$

This is the general expression for the entropy of a system with a given macrostate.

- During a process, the particles will redistribute themselves over the energy levels in the system and the number of particles in a given energy level will change.
 - ☐ the number of particles in some energy levels will increase while in other decrease.
- ◆ Mathematically, a process can be represented by a collection of changes in the n₁ terms:

$$(\Delta n_1, \Delta n_2, \ldots, \Delta n_i, \ldots, \Delta n_r)$$

◆ For an infinitesimal change in the macrostate, these finite changes can be replaced with infinitesimal changes:

$$(dn_1, dn_2,, dn_i,, dn_r)$$

$$S = -k \sum_{i=1}^{r} n_i \ln \left(\frac{n_i}{N_0} \right)$$

The change in entropy for any arbitrary change in state

$$dS = -k d \left\{ \sum_{i=1}^{r} n_i \ln \left(\frac{n_i}{N_0} \right) \right\}$$

$$dS = -k \sum_{i=1}^{r} d \left\{ n_i \ln \left(\frac{n_i}{N_0} \right) \right\}$$

Simplification of the equation will yield

$$dS = -k \sum_{i=1}^{r} ln \left(\frac{n_i}{N_0} \right) dn_i$$

This describes the changes in entropy for any process through which the system may be taken.

- The constraint equations for the isolating systems :
- number of atoms of the system will not change during the process

$$dN_0 = d\left(\sum_{i=1}^r n_i\right) = \sum_{i=1}^r dn_i = 0$$

☐ internal energy of the system will not change during the process

$$dU = d\left(\sum_{i=1}^{r} \epsilon_{i} n_{i}\right) = \sum_{i=1}^{r} \epsilon_{i} dn_{i} = 0$$

 $d\varepsilon_i$ = 0, since ε_i does not change during a process

 For problems containing a large number of variables, a direct substitution of the constraint equations in the entropy function to eliminate dependent variables cannot be applied.

Lagrange multipliers

 In this method, the differential constraint equations are multiplied by multipliers and then added to the entropy equation.

$$dS + \alpha dN_0 + \beta dU = 0 \qquad (10.12)$$

 α and β are Lagrange multipliers

◆ Substituting dS, dN₀, and dU:

$$-k\sum_{i=1}^{r} \ln \left(\frac{n_i}{N_0}\right) dn_i + \alpha \sum_{i=1}^{r} dn_i + \beta \sum_{i=1}^{r} \epsilon_i dn_i = 0$$

$$-k\sum_{i=1}^{r} \ln \left(\frac{n_i}{N_0}\right) dn_i + \alpha \sum_{i=1}^{r} dn_i + \beta \sum_{i=1}^{r} \epsilon_i dn_i = 0$$

Collecting terms:

$$\sum_{i=1}^{r} \left\{ -k \ln \left(\frac{n_i}{N_0} \right) + \alpha + \beta \epsilon_i \right\} dn_i = 0$$

♦ Then, the conditions for equilibrium:

$$-k \ln\left(\frac{n_i}{N_0}\right) + \alpha + \beta \, \epsilon_i = 0 \qquad (10.14)$$

$$\left(\frac{n_i}{N_0}\right) = e^{\alpha/k} \cdot e^{\beta \epsilon_i/k} \qquad (i = 1, 2, ..., r)$$

lacktriangle Here, the Lagrange multipliers, α and β , need to be evaluated.

$$\begin{split} dS &= -k \sum_{i=1}^{r} ln \left(\frac{n_i}{N_0} \right) dn_i &= -k \sum_{i=1}^{r} ln \left(\frac{1}{\mathcal{P}} e^{\beta \epsilon_i / k} \right) dn_i \\ \\ dS &= -k \sum_{i=1}^{r} \left((\beta \epsilon_i / k) - ln \mathcal{P} \right) dn_i \\ \\ dS &= -\beta \sum_{i=1}^{r} \epsilon_i dni + k ln \mathcal{P} \sum_{i=1}^{r} dn_i \\ \\ dS &= -\beta dU + k ln \mathcal{P} dN_0 \end{split}$$

$$dS = -\beta \, dU + k \ln \mathcal{P} \, dN_0$$

$$dU = T \, dS - P \, dV + \mu \, dN_0$$

$$dS = (1/T) \, dU + (P/T) \, dV - (\mu/T) \, dN_0$$

$$\beta = -1/T$$

$$\left(\frac{n_i}{N_0}\right) = e^{\alpha/k} \cdot e^{\beta \epsilon i/k}$$

$$\left(\frac{n_i}{N_0}\right) = (1/\mathcal{P}) \cdot e^{-\epsilon i/kT}$$

$$\frac{n_i}{N_0} = \frac{1}{P} e^{-(\epsilon_i/kT)}$$
 (i = 1, 2, ..., r) (10.15)

$$\mathcal{P} = \sum_{i=1}^{r} e^{-(\epsilon_i/kT)}$$
 $\mathcal{P} = \text{the partition function}$

Eq. (10.15), containing a set of r number of equations, constitutes the conditions for equilibrium in the statistical description of thermodynamic behaviour.

Calculation of Macroscopic Properties from Partition Function

$$S = -k \sum_{i=1}^{r} n_i \ln \left(\frac{n_i}{N_0} \right) \qquad \frac{n_i}{N_0} = \frac{1}{P} e^{-(\epsilon_i/kT)}$$

$$\frac{n_i}{N_0} = \frac{1}{P} e^{-(\epsilon_i/kT)}$$

$$S = -k \sum_{i=1}^{r} n_i \ln \left(\frac{1}{P} e^{-(\epsilon_i/kT)} \right)$$

$$S = \sum_{i=1}^{r} \epsilon_i n_i / T + k \ln \mathcal{P} \sum_{i=1}^{r} n_i$$

$$S = U/T + k N_0 ln \mathcal{P}$$

(10.17)

$$S = U/T + k N_0 \ln \mathcal{P}$$

$$F = U - TS = U - T \left[U/T + k N_0 \ln P \right]$$

 $F = -kT N_0 ln \mathcal{P}$

$$-S = \left(\frac{\partial}{\partial T} \left(-kT N_0 \ln \mathcal{P}\right)\right)_V \qquad \qquad dF = -SdT - PdV + \mu dN_0$$
$$-S = \left(\frac{\partial F}{\partial T}\right)_{V, N_0}$$

$$S = k N_0 \ln \mathcal{P} + kT N_0 \left(\frac{\partial \ln \mathcal{P}}{\partial T} \right)_{V, N_0}$$

$$U = F + TS = kT^2 N_0 \left(\frac{\partial \ln \mathcal{P}}{\partial T} \right)_{V, N_0}$$

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

$$U = kT^2 N_0 \left(\frac{\partial \ln \mathcal{P}}{\partial T} \right)_V$$

$$C_V = 2 kT N_0 \left[\frac{\partial \ln \mathcal{P}}{\partial T} \right]_{V, N_0} + kT^2 N_0 \left[\frac{\partial^2 \ln \mathcal{P}}{\partial T^2} \right]_{V, N_0}$$

Next Class

Lecture 35
Review Class